Meteorological ingredients of heavy precipitation and subsequent lake-filling episodes in the northwestern Sahara Hydrology and Earth System Sciences DOI 10.5194/hess-29-1395-2025 17 March 2025 The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help assess future water availability. Read more
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland Hydrology and Earth System Sciences DOI 10.5194/hess-29-1061-2025 27 February 2025 This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available. RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland">Read more
Creating a national urban flood dataset for China from news texts (2000–2022) at the county level Hydrology and Earth System Sciences DOI 10.5194/hess-29-767-2025 19 February 2025 We create China’s first open county-level urban flood dataset (2000–2022) using news media data with the help of deep learning. The dataset reflects both natural and societal influences and includes 7595 urban flood events across 2051 counties, covering 46 % of China’s land area. It reveals the predominance of summer floods, an upward trend since 2000, and a decline from southeast to northwest. Notably, some highly developed regions show a decrease, likely due to improved flood management. Read more
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept Hydrology and Earth System Sciences DOI 10.5194/hess-28-4427-2024 11 October 2024 Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding ERRA): proof of concept">Read more
Large-sample hydrology – a few camels or a whole caravan? Hydrology and Earth System Sciences DOI 10.5194/hess-28-4219-2024 20 September 2024 We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data. Read more
Young and new water fractions in soil and hillslope waters Hydrology and Earth System Sciences DOI 10.5194/hess-28-4295-2024 20 September 2024 We use a 3-year time series of tracer data of streamflow and soils to show how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, and waters in deep subsurface layers are even older; thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes. Read more
Mesoscale permeability variations estimated from natural airflows in the decorated Cosquer Cave (southeastern France) Hydrology and Earth System Sciences DOI 10.5194/hess-28-4035-2024 6 September 2024 Conservation of decorated caves is highly dependent on airflows and is correlated with rock formation permeability. We present the first conceptual model of flows around the Paleolithic decorated Cosquer coastal cave (southeastern France), quantify air permeability, and show how its variation affects water levels inside the cave. This study highlights that airflows may change in karst unsaturated zones in response to changes in the water cycle and may thus be affected by climate change. Read more
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020 Hydrology and Earth System Sciences DOI 10.5194/hess-28-3983-2024 2 September 2024 Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts. Read more
An increase in the spatial extent of European floods over the last 70 years Hydrology and Earth System Sciences DOI 10.5194/hess-28-3755-2024 23 August 2024 We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents. Read more
Hydro-pedotransfer functions: a roadmap for future development Hydrology and Earth System Sciences DOI 10.5194/hess-28-3391-2024 29 July 2024 Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research. Read more
A network approach for multiscale catchment classification using traits Hydrology and Earth System Sciences DOI 10.5194/hess-28-1617-2024 17 May 2024 We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites. Read more
An inter-comparison of approaches and frameworks to quantify irrigation from satellite data Hydrology and Earth System Sciences DOI 10.5194/hess-28-441-2024 7 February 2024 This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates. Read more
Uncertainty assessment of satellite remote-sensing-based evapotranspiration estimates: a systematic review of methods and gaps Hydrology and Earth System Sciences DOI 10.5194/hess-27-4505-2023 15 December 2023 Satellite data are increasingly used to estimate evapotranspiration (ET) or the amount of water moving from plants, soils, and water bodies into the atmosphere over large areas. Uncertainties from various sources affect the accuracy of these calculations. This study reviews the methods to assess the uncertainties of such ET estimations. It provides specific recommendations for a comprehensive assessment that assists in the potential uses of these data for research, monitoring, and management. Read more
Simulated hydrological effects of grooming and snowmaking in a ski resort on the local water balance Hydrology and Earth System Sciences DOI 10.5194/hess-27-4257-2023 29 November 2023 Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale. Read more
Technical note: NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data Hydrology and Earth System Sciences DOI 10.5194/hess-27-3621-2023 16 October 2023 We present an open-source platform in response to the NASA Open-Source Science Initiative for accessing and presenting quantitative remote-sensing earth observation,and climate data. With our platform scientists, stakeholders and concerned citizens can engage in the exploration, modelling, and understanding of data. We envisioned this platform as lowering the technical barriers and simplifying the process of accessing and leveraging additional modelling frameworks for data. NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data">Read more
Calibration of groundwater seepage against the spatial distribution of the stream network to assess catchment-scale hydraulic properties Hydrology and Earth System Sciences DOI 10.5194/hess-27-3221-2023 6 September 2023 We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins. Read more
Prediction of the absolute hydraulic conductivity function from soil water retention data Hydrology and Earth System Sciences DOI 10.5194/hess-27-1565-2023 5 May 2023 The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available. Read more
Patterns and drivers of water quality changes associated with dams in the Tropical Andes Hydrology and Earth System Sciences DOI 10.5194/hess-27-1493-2023 26 April 2023 Dams are an important and rapidly growing means of energy generation in the Tropical Andes of South America. To assess the impacts of dams in the region, we assessed differences in the upstream and downstream water quality of all hydropower dams in Colombia. We found evidence of substantial dam-induced changes in water temperature, dissolved oxygen concentration and suspended sediments. Dam-induced changes in Colombian waters violate regulations and are likely impacting aquatic life. Read more
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective Hydrology and Earth System Sciences DOI 10.5194/hess-26-6457-2022 27 February 2023 Although the “dry gets drier, and wet gets wetter (DDWW)” paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change. Read more
High-resolution drought simulations and comparison to soil moisture observations in Germany Hydrology and Earth System Sciences DOI 10.5194/hess-26-5137-2022 30 December 2022 In this paper, we deliver an evaluation of the second generation operational German drought monitor (www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved. Read more
Improving hydrologic models for predictions and process understanding using neural ODEs Hydrology and Earth System Sciences DOI 10.5194/hess-26-5085-2022 23 December 2022 Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments. ODEs">Read more
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices Hydrology and Earth System Sciences DOI 10.5194/hess-26-4837-2022 19 December 2022 Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results. Read more
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams Hydrology and Earth System Sciences DOI 10.5194/hess-26-3989-2022 4 November 2022 The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply. Read more
Technical note: Conservative storage of water vapour – practical in situ sampling of stable isotopes in tree stems Hydrology and Earth System Sciences DOI 10.5194/hess-26-3573-2022 12 October 2022 We developed a method of sampling and storing water vapour for isotope analysis, allowing us to infer plant water uptake depth. Measurements can be made at high temporal and spatial resolution even in remote areas. We ensured that all necessary components are easily available, making this method cost efficient and simple to implement. We found our method to perform well in the lab and in the field, enabling it to become a tool for everyone aiming to resolve questions regarding the water cycle. Read more
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL) Hydrology and Earth System Sciences DOI 10.5194/hess-26-3537-2022 10 October 2022 Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website. GRIP-GL)">Read more
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework Hydrology and Earth System Sciences DOI 10.5194/hess-26-3125-2022 9 September 2022 In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hill slopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hill slopes approaches a maximum power state. Read more
Agricultural intensification vs. climate change: what drives long-term changes in sediment load? Hydrology and Earth System Sciences DOI 10.5194/hess-26-3021-2022 7 September 2022 This study explored the quantitative contribution of agricultural intensification and climate change to the sediment load of a small agricultural watershed. Rather than a change in climatic conditions, changes in the land structure notably altered sediment concentrations under high-flow conditions, thereby contributing most to the increase in annual sediment loads. More consideration of land structure improvement is required when combating the transfer of soil from land to water. Read more
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon Hydrology and Earth System Sciences DOI 10.5194/hess-26-2997-2022 2 September 2022 This study investigates spatial and temporal patterns in the incidence angle dependence of backscatter from the ASCAT C-band scatterometer and relates those to precipitation, humidity, and radiation data and GRACE equivalent water thickness in ecoregions in the Amazon. The results show that the ASCAT data record offers a unique perspective on vegetation water dynamics exhibiting sensitivity to moisture availability and demand and phenological change at interannual, seasonal, and diurnal scales. ASCAT backscatter–incidence angle relationship in the Amazon">Read more
HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling” Hydrology and Earth System Sciences DOI 10.5194/hess-26-2161-2022 18 July 2022 Extensive efforts have focused on quantifying conservative chemical transport in geological formations. We assert that an explicit accounting of temporal information, under uncertainty, in addition to spatial information, is fundamental to an effective modelling formulation. We further assert that efforts to apply chemical transport equations at large length scales, based on measurements and model parameter values relevant to significantly smaller length scales, are an unattainable “holy grail”. HESS Opinions: Chemical transport modeling in subsurface hydrological systems – space, time, and the “holy grail” of “upscaling”">Read more
Uncertainty estimation with deep learning for rainfall–runoff modeling Hydrology and Earth System Sciences DOI 10.5194/hess-26-1673-2022 24 June 2022 This contribution evaluates distributional run-off predictions from deep-learning-based approaches. We propose a benchmarking setup and establish four strong baselines. The results show that accurate, precise, and reliable uncertainty estimation can be achieved with deep learning. Read more
Towards hybrid modeling of the global hydrological cycle Hydrology and Earth System Sciences DOI 10.5194/hess-26-1579-2022 15 June 2022 We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective. Read more
Evaporation enhancement drives the European water-budget deficit during multi-year droughts Hydrology and Earth System Sciences DOI 10.5194/hess-26-1527-2022 13 June 2022 Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods. Read more
Future water temperature of rivers in Switzerland under climate change investigated with physics-based models Hydrology and Earth System Sciences DOI 10.5194/hess-26-1063-2022 16 May 2022 This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed. Read more
Improved representation of agricultural land use and crop management for large-scale hydrological impact simulation in Africa using SWAT+ Hydrology and Earth System Sciences DOI 10.5194/hess-26-71-2022 8 April 2022 We present an approach on how to incorporate crop phenology in a regional hydrological model using decision tables and global datasets of rain-fed and irrigated cropland with the associated cropping calendar and management practices. Results indicate improved temporal patterns of leaf area index (LAI) and evapotranspiration (ET) simulations in comparison with remote sensing data. In addition, the improvement of the cropping season also helps to improve soil erosion estimates in cultivated areas. SWAT+">Read more
Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline Hydrology and Earth System Sciences DOI 10.5194/hess-25-6203-2021 23 February 2022 We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely. Read more
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields Hydrology and Earth System Sciences DOI 10.5194/hess-25-5905-2021 26 January 2022 The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times. Read more
Relative humidity gradients as a key constraint on terrestrial water and energy fluxes Hydrology and Earth System Sciences DOI 10.5194/hess-25-5175-2021 12 November 2021 Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls. Read more
From hydraulic root architecture models to macroscopic representations of root hydraulics in soil water flow and land surface models Hydrology and Earth System Sciences DOI 10.5194/hess-25-4835-2021 20 October 2021 Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models. Read more
Rainbow color map distorts and misleads research in hydrology – guidance for better visualizations and science communication Hydrology and Earth System Sciences DOI 10.5194/hess-25-4549-2021 4 October 2021 We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media’s attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science. Read more
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management Hydrology and Earth System Sciences DOI 10.5194/hess-25-3897-2021 20 August 2021 Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes. Read more
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology Hydrology and Earth System Sciences DOI 10.5194/hess-25-1849-2021 19 May 2021 This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available. CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology">Read more
Do small and large floods have the same drivers of change? A regional attribution analysis in Europe Hydrology and Earth System Sciences DOI 10.5194/hess-25-1347-2021 26 April 2021 Recent studies have shown evidence of increasing and decreasing trends for average floods and flood quantiles across Europe. Studies attributing observed changes in flood peaks to their drivers have mostly focused on the average flood behaviour, without distinguishing small and large floods. This paper proposes a new framework for attributing flood changes to potential drivers, as a function of return period (T), in a regional context. Read more
Vapor plumes in a tropical wet forest: spotting the invisible evaporation Hydrology and Earth System Sciences DOI 10.5194/hess-25-619-2021 3 March 2021 Forest evaporation exports a vast amount of water vapor from land ecosystems into the atmosphere. This work describes the formation process of vapor plumes in a tropical wet forest as evidence of evaporation processes happening during rain events. Read more
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure Hydrology and Earth System Sciences DOI 10.5194/hess-25-121-2021 27 January 2021 The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation ( E ) and precipitation ( P ), or E−P . Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent satellite-based climate data records and ERA5 reanalysis E−P data. Read more
New flood frequency estimates for the largest river in Norway based on the combination of short and long time series Hydrology and Earth System Sciences DOI 10.5194/hess-24-5595-2020 24 December 2020 We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring. Read more
The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA Hydrology and Earth System Sciences DOI 10.5194/hess-24-5095-2020 7 December 2020 Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity. USA">Read more
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow Hydrology and Earth System Sciences DOI 10.5194/hess-24-4763-2020 10 November 2020 Wild salmon numbers in Nova Scotia, Canada, have been plummeting in recent decades. In 2014, we launched an ionic aluminium monitoring program in Nova Scotia to see if this toxic element was a threat to salmon populations. We found that all 10 monitored rivers had ionic aluminium concentrations that exceeded the threshold for aquatic health. Our results demonstrate that elevated aluminium still threatens aquatic ecosystems and that delays in recovery from acid rain remains a critical issue. Read more
Hydrology and water resources management in ancient India Hydrology and Earth System Sciences DOI 10.5194/hess-24-4691-2020 5 November 2020 Like in all ancient civilisations, the need to manage water propelled the growth of hydrological science in ancient India also. In this paper, we provide some fascinating glimpses into the hydrological, hydraulic, and related engineering knowledge that existed in ancient India, as discussed in contemporary literature and recent explorations and findings. Many interesting dimensions of early scientific endeavours emerge as we investigate deeper into ancient texts, including Indian mythology. Read more
In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future Hydrology and Earth System Sciences DOI 10.5194/hess-24-4413-2020 13 October 2020 Water isotopes are a scientific tool that can be used to identify sources of water and answer questions such as From which soil depths do plants take up water?, which are highly relevant under changing climatic conditions. In the past, the measurement of water isotopes required tremendous effort. In the last decade methods have advanced and can now be applied in the field. Herein, we review the current status of direct field measurements of water isotopes and discuss future applications. Read more
Revisiting the global hydrological cycle: is it intensifying? Hydrology and Earth System Sciences DOI 10.5194/hess-24-3899-2020 20 August 2020 We overview and retrieve a great amount of global hydroclimatic data sets. We improve the quantification of the global hydrological cycle, its variability and its uncertainties through the surge of newly available data sets. We test (but do not confirm) established climatological hypotheses, according to which the hydrological cycle should be intensifying due to global warming. We outline a stochastic view of hydroclimate, which provides a reliable means of dealing with its variability. Read more