Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence Atmospheric Chemistry and Physics DOI 10.5194/acp-24-7041-2024 1 July 2024 Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability. Read more
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa Atmospheric Chemistry and Physics DOI 10.5194/acp-24-5757-2024 21 June 2024 To tackle the current pressing atmospheric science issues, as well as those in the future, a robust scientific community is necessary in all regions across the globe. Unfortunately, this does not yet exist. There are many geographical areas that are still underrepresented in the atmospheric science community, many of which are in the Global South. There are also larger gaps in the understanding of atmospheric composition, processes, and impacts in these regions. In this opinion, we focus on two geographical areas in the Global South to discuss some common challenges and constraints, with a focus on our strengths in atmospheric science research. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research. Read more
Opinion: A research roadmap for exploring atmospheric methane removal via iron salt aerosol Atmospheric Chemistry and Physics DOI 10.5194/acp-24-5659-2024 7 June 2024 Rapid reduction in atmospheric methane is needed to slow the rate of global warming. Reducing anthropogenic methane emissions is a top priority. However, atmospheric methane is also impacted by rising natural emissions and changing sinks. Studies of possible atmospheric methane removal approaches, such as iron salt aerosols to increase the chlorine radical sink, benefit from a roadmapped approach to understand if there may be viable and socially acceptable ways to decrease future risk. Read more
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations Atmospheric Chemistry and Physics DOI 10.5194/acp-24-5935-2024 3 June 2024 Upper tropical clouds have a strong impact on Earth’s climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere. Read more
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction Atmospheric Chemistry and Physics DOI 10.5194/acp-24-3421-2024 20 March 2024 We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling. Read more
Explaining the green volcanic sunsets after the 1883 eruption of Krakatoa Atmospheric Chemistry and Physics DOI 10.5194/acp-24-2415-2024 23 February 2024 It is well known that volcanic eruptions strongly affect the colours of the twilight sky. Typically, volcanic eruptions lead to enhanced reddish and violet twilight colours. In rare cases, however, volcanic eruptions can also lead to green sunsets. This study provides an explanation for the occurrence of these unusual green sunsets based on simulations with a radiative transfer model. Green volcanic sunsets require a sufficient stratospheric aerosol optical depth and specific aerosol sizes. Read more
Opinion: Aerosol remote sensing over the next 20 years Atmospheric Chemistry and Physics DOI 10.5194/acp-24-2113-2024 19 February 2024 Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth’s atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models. Read more
Opinion: The importance of historical and paleoclimate aerosol radiative effects Atmospheric Chemistry and Physics DOI 10.5194/acp-24-533-2024 3 January 2024 Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols interacted with the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem. Read more
Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic Atmospheric Chemistry and Physics DOI 10.5194/acp-23-15589-2023 18 December 2023 Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer. Read more
Paul J. Crutzen – a pioneer in Earth system science and a founding member of the journal Atmospheric Chemistry and Physics Atmospheric Chemistry and Physics DOI 10.5194/acp-23-15445-2023 13 December 2023 Paul J. Crutzen was a pioneer in atmospheric sciences and a kind-hearted, humorous person with empathy for the private lives of his colleagues and students. He made fundamental scientific contributions to a wide range of scientific topics in all parts of the atmosphere. Paul was among the founders of the journal Atmospheric Chemistry and Physics. His work will continue to be a guide for generations of scientists and environmental policymakers to come. Read more