The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation Geoscientific Model Development DOI 10.5194/gmd-15-617-2022 15 April 2022 Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. The model will ultimately help to improve projections of sea level rise and climate change. WAOM v1.0): development and evaluation">Read more
Rhizodeposition efficiency of pearl millet genotypes assessed on a short growing period by carbon isotopes (δ13C and F14C) SOIL DOI 10.5194/soil-8-49-2022 13 April 2022 Unravelling relationships between plant rhizosheath, root exudation and soil C dynamic may bring interesting perspectives in breeding for sustainable agriculture. Using four pearl millet lines with contrasting rhizosheaths, we found that δ13C and F14C of root-adhering soil differed from those of bulk and control soil, indicating C exudation in the rhizosphere. This C exudation varied according to the genotype, and conceptual modelling performed with data showed a genotypic effect on the RPE. Read more
Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models Geoscientific Model Development DOI 10.5194/gmd-15-269-2022 11 April 2022 Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely. PRIMAVERA climate models">Read more
Improved representation of agricultural land use and crop management for large-scale hydrological impact simulation in Africa using SWAT+ Hydrology and Earth System Sciences DOI 10.5194/hess-26-71-2022 8 April 2022 We present an approach on how to incorporate crop phenology in a regional hydrological model using decision tables and global datasets of rain-fed and irrigated cropland with the associated cropping calendar and management practices. Results indicate improved temporal patterns of leaf area index (LAI) and evapotranspiration (ET) simulations in comparison with remote sensing data. In addition, the improvement of the cropping season also helps to improve soil erosion estimates in cultivated areas. SWAT+">Read more
Arctic sea level variability from high-resolution model simulations and implications for the Arctic observing system Ocean Science DOI 10.5194/os-18-51-2022 6 April 2022 This study explores the Arctic sea level variability depending on different timescales and the relation to temperature, salinity and mass changes, identifying key parameters and regions that need to be observed co-ordinately. The decadal sea level variability reflects salinity changes. But it can only reflect salinity change at periods of greater than 1 year, highlighting the requirement for enhancing in situ hydrographic observations and complicated interpolation methods. Read more
Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy – Part 1: Intercomparison of modal and sectional aerosol modules Atmospheric Chemistry and Physics DOI 10.5194/acp-22-93-2022 4 April 2022 The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics. Read more
Not all biodiversity rich spots are climate refugia Biogeosciences DOI 10.5194/bg-18-6567-2021 1 April 2022 Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming. Read more
Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble Earth System Dynamics DOI 10.5194/esd-12-1543-2021 30 March 2022 This research paper proposes an assessment of mean climate change responses and related uncertainties over Europe for mean seasonal temperature and total seasonal precipitation. An advanced statistical approach is applied to a large ensemble of 87 high-resolution EURO-CORDEX projections. For the first time, we provide a comprehensive estimation of the relative contribution of GCMs and RCMs, RCP scenarios, and internal variability to the total variance of a very large ensemble. EURO-CORDEX regional climate model ensemble">Read more
The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22 Atmospheric Measurement Techniques DOI 10.5194/amt-14-7975-2021 28 March 2022 The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry. ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22">Read more
A simple model of ozone–temperature coupling in the tropical lower stratosphere Atmospheric Chemistry and Physics DOI 10.5194/acp-21-18531-2021 25 March 2022 Balloon and satellite observations show strong coupling between large-scale ozone and temperature fields in the tropical lower stratosphere, spanning timescales of days to years. We present a simple interpretation of this behaviour based on an idealized model of transport by the tropical stratospheric circulation, and good quantitative agreement with observations demonstrates that this is a useful simplification. The results provide simple understanding of observed atmospheric behaviour. Read more