Long-term prediction of the Gulf Stream meander using OceanNet: a principled neural-operator-based digital twin Ocean Science DOI 10.5194/os-21-1065-2025 20 June 2025 The Gulf Stream is a prominent oceanic feature in the northwestern Atlantic Ocean that influences weather patterns in the Northern Hemisphere and is notoriously difficult to predict. We present a machine learning model, OceanNet, to predict the position of the Gulf Stream months in advance. OceanNet is able to perform a 120 d prediction 4 000 000 times faster than traditional methods of ocean modeling with great accuracy. Read more
Using 3D observations with high spatio-temporal resolution to calibrate and evaluate a process-focused cellular automaton model of soil erosion by water SOIL DOI 10.5194/soil-11-413-2025 16 June 2025 This study develops a new method to improve the calibration and evaluation of models that predict soil erosion by water. By using advanced imaging techniques, we can capture detailed changes in the soil surface over time. This helps improve models that forecast erosion, especially as climate change creates new and unpredictable conditions. Our findings highlight the need for more precise tools to better model erosion of our land and environment in the future. Read more
The potential of observing atmospheric rivers with Global Navigation Satellite System (GNSS) radio occultation Atmospheric Measurement Techniques DOI 10.5194/amt-18-2481-2025 12 June 2025 The study investigates using Global Navigation Satellite System Radio Occultation (GNSS-RO) to analyze the vertical structure of humidity in atmospheric rivers (ARs). Specific humidity and integrated water vapor from the COSMIC Data Analysis and Archive Center (CDAAC) and the Wegener Center (WEGC) are compared with the Special Sensor Microwave Imager/Sounder (SSMIS), showing that GNSS-RO adds vertically resolved data. Despite a slight low bias, combining GNSS-RO and SSMIS improves AR analysis. Read more
Implications of reduced-complexity aerosol thermodynamics on organic aerosol mass concentration and composition over North America Atmospheric Chemistry and Physics DOI 10.5194/acp-25-5773-2025 12 June 2025 We implemented the BAT-VBS (Binary Activity Thermodynamics volatility basis set) aerosol thermodynamics model in the GEOS-Chem chemical transport model to efficiently account for organic aerosol water uptake, nonideal mixing, and impacts on the gas–particle partitioning of semi-volatile organics. Compared to GEOS-Chem's complex (dry) scheme, we show that the BAT-VBS model can predict substantial enhancements in organic aerosol mass concentration at moderate-to-high relative humidity. Read more
GC Insights: Consistency in pyrocartography starts with color Geoscience Communication DOI 10.5194/gc-8-167-2025 11 June 2025 Fire progression maps (FPMs) provide information regarding wildland fire spread (progress) through time to broad audiences. However, information regarding the best use of color to denote fire progression via maps is limited. This can potentially limit a map's ability to effectively communicate information by creating inconsistent messaging and accessibility challenges. Here, I provide color map recommendations to open a discussion towards consistent and accessible fire progression mapping. Read more
Leaping and vortex motion of the shock aurora toward the late evening sector observed on 26 February 2023 Annales Geophysicae DOI 10.5194/angeo-43-303-2025 11 June 2025 Our research explores the shock aurora, which is typically observed on the dayside due to the rapid compression of the Earth's magnetic field. We observed this rare aurora on the nightside, a region where such events are difficult to detect. Using ground-based cameras, we identified new features, including leaping and vortex-like patterns. These findings offer a fresh insight into the interactions between the solar wind and the magnetosphere, enhancing our understanding of space weather and its effects. Read more
Sedimentary ancient DNA insights into foraminiferal diversity near the grounding line in the western Ross Sea, Antarctica Biogeosciences DOI 10.5194/bg-22-2601-2025 6 June 2025 Ancient foraminiferal DNA is studied in five Antarctic cores with sediments up to 25 kyr old. We use a standard and a new, more effective marker, which may become the next standard for paleoenvironmental studies. Much less diverse foraminifera occur on slopes of submarine moraines than in open-marine settings. Soft-walled foraminifera, not found in the fossil record, are especially abundant. There is no foraminiferal DNA in tills, suggesting its destruction during glacial redeposition. Read more
Explaining the period fluctuation of the quasi-biennial oscillation Atmospheric Chemistry and Physics DOI 10.5194/acp-25-5647-2025 6 June 2025 The paper addresses a fundamental but unresolved question about the tropical stratospheric wind oscillation: why does the period of the oscillation fluctuate irregularly? We use global reanalysis data to provide evidence that the oscillation period is primarily modulated by seasonal variations in small-scale atmospheric wave activity. The findings have implications for seasonal and climate predictions. Read more
Mean ocean temperature change and decomposition of the benthic δ18O record over the past 4.5 million years Climate of the Past DOI 10.5194/cp-21-973-2025 3 June 2025 We reconstruct changes in mean ocean temperature (ΔMOT) over the last 4.5 Myr. We find that the ratio of ΔMOT to changes in global mean sea surface temperature was around 0.5 before the Middle Pleistocene transition but was 1 thereafter. We subtract our ΔMOT reconstruction from the global δ18O record to derive the δ18O of seawater. Finally, we develop a theoretical understanding of why the ratio of ΔMOT / ΔGMSST changed over the Plio-Pleistocene. Read more
Quantified ice-nucleating ability of AgI-containing seeding particles in natural clouds Atmospheric Chemistry and Physics DOI 10.5194/acp-25-5387-2025 2 June 2025 We analyzed the ability of silver iodide particles (a commonly used cloud-seeding agent) to form ice crystals in naturally occurring liquid clouds at −5 to −8 °C and found that only ≈ 0.1 %−1 % of particles nucleate ice, with a negative dependence on temperature. By contextualizing our results with previous laboratory studies, we help to bridge the gap between laboratory and field experiments, which also helps to inform future cloud-seeding projects. Read more