Modal shift in North Atlantic seasonality during the last deglaciation Climate of the Past DOI 10.5194/cp-16-265-2020 18 February 2020 Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides . Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated. Read more
Dimensions of marine phytoplankton diversity Biogeosciences DOI 10.5194/bg-17-609-2020 18 February 2020 Phytoplankton are an essential component of the marine food web and earth’s carbon cycle. We use observations, ecological theory and a unique trait-based ecosystem model to explain controls on patterns of marine phytoplankton biodiversity. We find that different dimensions of diversity (size classes, biogeochemical functional groups, thermal norms) are controlled by a disparate combination of mechanisms. This may explain why previous studies of phytoplankton diversity had conflicting results. Read more
A new look at the environmental conditions favorable to secondary ice production Atmospheric Chemistry and Physics DOI 10.5194/acp-20-1391-2020 13 February 2020 This study attempts identification of mechanisms of secondary ice production (SIP) based on the observation of small faceted ice crystals. It was found that in both mesoscale convective systems and frontal clouds, SIP was observed right above the melting layer and extended to the higher altitudes with colder temperatures. A principal conclusion of this work is that the freezing drop shattering mechanism is plausibly accounting for the measured ice concentrations in the observed condition. Read more
Machine learning and soil sciences: a review aided by machine learning tools SOIL DOI 10.5194/soil-6-35-2020 13 February 2020 The application of machine learning (ML) has shown an accelerated adoption in soil sciences. It is a difficult task to manually review all papers on the application of ML. This paper aims to provide a review of the application of ML aided by topic modelling in order to find patterns in a large collection of publications. The objective is to gain insight into the applications and to discuss research gaps. We found 12 main topics and that ML methods usually perform better than traditional ones. Read more
Global catchment modelling using World-Wide HYPE (WWH), open data, andstepwise parameter estimation Hydrology and Earth System Sciences DOI 10.5194/hess-24-535-2020 11 February 2020 How far can we reach in predicting river flow globally, using integrated catchment modelling and open global data? For the first time, a catchment model was applied world-wide, covering the entire globe with a relatively high resolution. The results show that stepwise calibration provided better performance than traditional modelling of the globe. The study highlights that open data and models are crucial to advance hydrological sciences by sharing knowledge and enabling transparent evaluation. Read more
Mapping the drivers of uncertainty in atmospheric selenium deposition with global sensitivity analysis Atmospheric Chemistry and Physics DOI 10.5194/acp-20-1363-2020 11 February 2020 The amount of the micronutrient selenium in food largely depends on the amount and form of selenium in soil. The atmosphere acts as a source of selenium to soils through deposition, yet little information is available about atmospheric selenium cycling. Therefore, we built the first global atmospheric selenium model. Through sensitivity and uncertainty analysis we determine that selenium can be transported thousands of kilometers and that measurements of selenium emissions should be prioritized. Read more
An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0) Geoscientific Model Development DOI 10.5194/gmd-13-335-2020 6 February 2020 We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover. Read more
Identification of new microbial functional standards for soil quality assessment SOIL DOI 10.5194/soil-6-17-2020 6 February 2020 Soil quality depends on the functioning of soil microbiota. Only a few standardized methods are available to assess this as well as adverse effects of human activities. So we need to identify promising additional methods that target soil microbial function. Discussed are (i) molecular methods using qPCR for new endpoints, e.g. in N and P cycling and greenhouse gas emissions, (ii) techniques for fungal enzyme activities, and (iii) field methods on carbon turnover such as the litter bag test. Read more
A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speedthrough influence on mélange rigidity The Cryosphere DOI 10.5194/tc-14-211-2020 27 January 2020 Jakobshavn Isbræ, considered to be Greenland’s fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier’s behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier’s speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses. Read more
Electron spin resonance (ESR) thermochronometry of the Hida range of the Japanese Alps: validation and future potential Geochronology DOI 10.5194/gchron-2-1-2020 27 January 2020 Rates of landscape evolution over the past million years are difficult to quantify. This study develops a technique which is able to measure changes in rock cooling rates (related to landscape evolution) over this timescale. The technique is based on the electron spin resonance dating of quartz minerals. Measurement protocols and new numerical models are proposed that describe these data, allowing for their translation into rock cooling rates. Read more