High probability of triggering climate tipping points under current policies modestly amplified by Amazon dieback and permafrost thaw Earth System Dynamics DOI 10.5194/esd-16-565-2025 23 April 2025 We investigate the probabilities of triggering climate tipping points under various emission scenarios and how they are altered by additional carbon emissions from the tipping of the Amazon and permafrost. We find that there is a high risk for triggering climate tipping points under a scenario comparable to current policies. However, the additional warming and hence the additional risk of triggering other climate tipping points from the tipping of the Amazon and permafrost remain small. Read more
Potential for equation discovery with AI in the climate sciences Earth System Dynamics DOI 10.5194/esd-16-475-2025 31 March 2025 AI is impacting science, providing key data insights, but most algorithms are statistical requiring cautious "out-of-sample" extrapolation. Yet climate research concerns predicting future climatic states. We consider a new method of AI-led equation discovery. Equations offer process interpretation and more robust predictions. We recommend this method for climate analysis, suggesting illustrative application to atmospheric convection, land–atmosphere CO2 flux, and global ocean circulation models. Read more
Modeling 2020 regulatory changes in international shipping emissions helps explain anomalous 2023 warming Earth System Dynamics DOI 10.5194/esd-15-1527-2024 4 December 2024 On 1 January 2020, international shipping vessels were required to substantially reduce the amount of particulate they emit to improve air quality. In this work we demonstrate how this regulatory change contributed to the anomalous warming observed in recent months using climate model simulations that include such a change. Future policies should also perhaps consider their impact on climate, and climate modelers should promptly include those changes in future modeling efforts. Read more
Cross-scale causal information flow from the El Niño–Southern Oscillation to precipitation in eastern China Earth System Dynamics DOI 10.5194/esd-15-1509-2024 2 December 2024 The El Niño–Southern Oscillation (ENSO) is a gigantic natural orchestra playing with the temperature of Pacific waters and influencing air temperature and rainfall worldwide. Naturally, the “loudness” or amplitude of ENSO has effects on climate; however, consonance of its various tones, or phases of different ENSO oscillatory components, can exert causal effects on rainfall in some areas in China. In different regions, different aspects of ENSO dynamics can predict rainfall amounts. Read more
Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5 Earth System Dynamics DOI 10.5194/esd-15-1353-2024 30 October 2024 Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction. ACCESS-ESM-1.5">Read more
Bringing it all together: science priorities for improved understanding of Earth system change and to support international climate policy Earth System Dynamics DOI 10.5194/esd-15-1319-2024 18 October 2024 We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake. Read more
Uncertainty-informed selection of CMIP6 Earth system model subsets for use in multisectoral and impact models Earth System Dynamics DOI 10.5194/esd-15-1301-2024 15 October 2024 From running climate models to using their outputs to identify impacts, modeling the integrated human–Earth system is expensive. This work presents a method to identify a smaller subset of models from the full set that preserves the uncertainty characteristics of the full set. This results in a smaller number of runs that an impact modeler can use to assess how uncertainty propagates from the Earth to the human system, while still capturing the range of outcomes provided by climate models. Read more
Cautionary remarks on the planetary boundary visualisation Earth System Dynamics DOI 10.5194/esd-15-1153-2024 26 August 2024 Our paper examines the visual representation of the planetary boundary concept, which helps convey Earth’s capacity to sustain human life. We identify three issues: exaggerated impact sizes, confusing color patterns, and inaccessibility for colour-vision deficiency. These flaws can lead to overstating risks. We suggest improving these visual elements for more accurate and accessible information for decision-makers. Read more
Absence of causality between seismic activity and global warming Earth System Dynamics DOI 10.5194/esd-15-1015-2024 19 August 2024 It was recently suggested that global warming can be explained by the non-anthropogenic factor of seismic activity. If that is the case, it would have profound implications. We have assessed the validity of the claim by using a statistical technique that evaluates the existence of causal connections between variables, finding no evidence for any causal relationship between seismic activity and global warming. Read more
Tipping point detection and early warnings in climate, ecological, and human systems Earth System Dynamics DOI 10.5194/esd-15-1117-2024 19 August 2024 Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far. Read more