Deconvolution of boundary layer depth and aerosol constraints on cloud water path in subtropical stratocumulus decks Atmospheric Chemistry and Physics DOI 10.5194/acp-20-3609-2020 3 April 2020 Cloud water content and the number of droplets inside clouds covary with boundary layer depth. This covariation may amplify the change in water content due to a change in droplet number inferred from long-term observations. Taking this into account shows that the change in water content for increased droplet number in observations and high-resolution simulations agrees in shallow boundary layers. Meanwhile, deep boundary layers are under-sampled in process-scale simulations and observations. Read more
Methanethiol, dimethyl sulfide and acetone over biologically productive waters in the southwest Pacific Ocean Atmospheric Chemistry and Physics DOI 10.5194/acp-20-3061-2020 24 March 2020 Methanethiol (MeSH) is a reduced sulfur gas originating from phytoplankton, with a global ocean source of ~ 17 % of dimethyl sulfide (DMS). It has been little studied and is rarely observed over the ocean. In this work, MeSH was measured at much higher levels than previously observed (3–36 % of parallel DMS mixing ratios). MeSH could be a significant source of atmospheric sulfur over productive regions of the ocean, but its distribution, and its atmospheric impact, requires more investigation. Read more
Ultra-clean and smoky marine boundary layers frequently occur in the same season over the southeast Atlantic Atmospheric Chemistry and Physics DOI 10.5194/acp-20-2341-2020 12 March 2020 Using observations from instruments deployed to a small island in the southeast Atlantic, we study days when the atmospheric concentrations of particles near the surface are exceptionally low. Interestingly, these ultra-clean boundary layers occur in the same months as the smokiest boundary layers associated with biomass burning in Africa. We find evidence that enhancements in drizzle scavenging, on top of a seasonal maximum in cloudiness and precipitation, likely drive these conditions. Read more
A new look at the environmental conditions favorable to secondary ice production Atmospheric Chemistry and Physics DOI 10.5194/acp-20-1391-2020 13 February 2020 This study attempts identification of mechanisms of secondary ice production (SIP) based on the observation of small faceted ice crystals. It was found that in both mesoscale convective systems and frontal clouds, SIP was observed right above the melting layer and extended to the higher altitudes with colder temperatures. A principal conclusion of this work is that the freezing drop shattering mechanism is plausibly accounting for the measured ice concentrations in the observed condition. Read more
Mapping the drivers of uncertainty in atmospheric selenium deposition with global sensitivity analysis Atmospheric Chemistry and Physics DOI 10.5194/acp-20-1363-2020 11 February 2020 The amount of the micronutrient selenium in food largely depends on the amount and form of selenium in soil. The atmosphere acts as a source of selenium to soils through deposition, yet little information is available about atmospheric selenium cycling. Therefore, we built the first global atmospheric selenium model. Through sensitivity and uncertainty analysis we determine that selenium can be transported thousands of kilometers and that measurements of selenium emissions should be prioritized. Read more
Altitude profiles of cloud condensation nuclei characteristics across the Indo-Gangetic Plainprior to the onset of the Indian summer monsoon Atmospheric Chemistry and Physics DOI 10.5194/acp-20-561-2020 27 January 2020 Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCNs), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the 2016 Indian summer monsoon (ISM). A high CCN concentration is observed up to 2.5 km across the IGP, indicating the significant possibility of aerosol indirect effects. Read more
Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust:a closure study Atmospheric Chemistry and Physics DOI 10.5194/acp-19-15087-2019 30 December 2019 For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on ground-based active remote sensing, is presented. The closure studies were conducted in Cyprus. A focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers. The closure studies show that heterogeneous ice nucleation can play a dominant role in ice formation. Read more
On the seasonal variation in observed size distributions in northern Europe and their changes with decreasing anthropogenic emissions in Europe: climatology and trend analysis based on 17 years of data from Aspvreten, Sweden Atmospheric Chemistry and Physics DOI 10.5194/acp-19-14849-2019 17 December 2019 In this study we explore 17 years of aerosol number size distribution data (10–390 nm) observed at Aspvreten (58.8° N, 17.4° E, 25 m a.s.l.). The station, located in northern Europe, is representative of rural background conditions. The study focused on identifying trends in aerosol number size distribution properties. The study shows that total number has decreased by 30 % and aerosol submicron mass by 50 % on average. Observed trends vary strongly with both season and particle size. Read more
The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic Atmospheric Chemistry and Physics DOI 10.5194/acp-19-14493-2019 10 December 2019 Boundary layer (BL) semi-direct effects in the remote SE Atlantic are investigated using LASIC field measurements and satellite retrievals. Low-cloud cover and cloud liquid water path decrease with increasing smoke loadings in the BL. Daily-mean surface-based mixed layer is warmer by 0.5 K, moisture accumulates near the surface throughout the night, and the BL deepens by 200 m, with LWPs and cloud top heights increasing, in the sunlit morning hours, as part of the smoke-altered BL diurnal cycle. Read more
Large-scale particulate air pollution and chemical fingerprint of volcanic sulfate aerosols from the 2014–2015 Holuhraun flood lava eruption of Bárðarbunga volcano (Iceland) Atmospheric Chemistry and Physics DOI 10.5194/acp-19-14253-2019 3 December 2019 This study, benefiting especially from recently developed mass spectrometry observations of aerosols, highlights unknown properties of volcanic sulfates in the troposphere. It shows their specific chemical fingerprint, distinct from those of freshly emitted industrial sulfates and background aerosols. We also demonstrate the large-scale persistence of the volcanic sulfate pollution over weeks. Hence, these results cast light on the impact of tropospheric eruptions on air quality and climate. Read more