ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set Atmospheric Measurement Techniques DOI 10.5194/amt-14-309-2021 4 February 2021 Monitoring and describing the spatiotemporal variability in dust aerosols is crucial for understanding their multiple effects, related feedbacks, and impacts within the Earth system. This study describes the development of the ModIs Dust AeroSol (MIDAS) data set. MIDAS provides columnar daily dust optical depth (DOD) at 550 nm at a global scale and fine spatial resolution (0.1∘ × 0.1∘) over a 15-year period (2003–2017). This new data set combines quality filtered satellite aerosol optical depth (AOD) retrievals from MODIS-Aqua at swath level (Collection 6.1; Level 2), along with DOD-to-AOD ratios provided by the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis to derive DOD on the MODIS native grid. The uncertainties of the MODIS AOD and MERRA-2 dust fraction, with respect to the AEronet RObotic NETwork (AERONET) and LIdar climatology of vertical Aerosol Structure for space-based lidar simulation (LIVAS), respectively, are taken into account for the estimation of the total DOD uncertainty. MERRA-2 dust fractions are in very good agreement with those of LIVAS across the dust belt in thetropical Atlantic Ocean and the Arabian Sea; the agreement degrades in North America and the Southern Hemisphere, where dust sources are smaller. MIDAS, MERRA-2, and LIVAS DODs strongly agree when it comes to annual and seasonal spatial patterns, with colocated global DOD averages of 0.033, 0.031, and 0.029, respectively; however, deviations in dust loading are evident and regionally dependent. Overall, MIDAS is well correlated with AERONET-derived DODs (R=0.89) and only shows a small positive bias (0.004 or 2.7 %). Among the major dust areas of the planet, the highest R values (>0.9) are found at sites of North Africa, the Middle East, and Asia. MIDAS expands, complements, and upgrades the existing observational capabilities of dust aerosols, and it is suitable for dust climatological studies, model evaluation, and data assimilation. MIDAS): a global fine-resolution dust optical depth data set">Read more
Quantifying CO2 emissions of a city with the Copernicus Anthropogenic CO2 Monitoring satellite mission Atmospheric Measurement Techniques DOI 10.5194/amt-13-6733-2020 13 January 2021 The European CO2M mission is a proposed constellation of CO 2 imaging satellites expected to monitor CO 2 emissions of large cities. Using synthetic observations, we show that a constellation of two or more satellites should be able to quantify Berlin’s annual emissions with 10–20 % accuracy, even when considering atmospheric transport model errors. We therefore expect that CO2M will make an important contribution to the monitoring and verification of CO 2 emissions from cities worldwide. Read more
Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment Atmospheric Measurement Techniques DOI 10.5194/amt-13-6691-2020 6 January 2021 To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the multiwavelength Mie-Raman lidar of Lille University. A part of the fluorescence spectrum is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has demonstrated high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected. The technique can also be used for monitoring the aerosol inside the cloud layers. Read more
Validation of Aeolus wind products above the Atlantic Ocean Atmospheric Measurement Techniques DOI 10.5194/amt-13-6007-2020 10 December 2020 A first validation for the European satellite Aeolus is presented. Aeolus is the first satellite that can actively measure horizontal wind profiles from space. Radiosonde launches on board the German research vessel Polarstern have been utilized to validate Aeolus observations over the Atlantic Ocean, a region where almost no other reference measurements are available. It is shown that Aeolus is able to measure accurately atmospheric winds and thus may significantly improve weather forecasts. Read more
A technical description of the Balloon Lidar Experiment (BOLIDE) Atmospheric Measurement Techniques DOI 10.5194/amt-13-5681-2020 19 November 2020 The Balloon Lidar Experiment was the first lidar dedicated to measurements in the mesosphere flown on a balloon. During a 6 d flight, it made high-resolution observations of polar mesospheric clouds which form at high latitudes during summer at ~ 83 km altitude and are the highest clouds in Earth’s atmosphere. We describe the instrument and assess its performance. We could detect fainter clouds with higher resolution than what is possible with ground-based instruments. BOLIDE)">Read more
A feasibility study to use machine learning as an inversion algorithm for aerosol profile and property retrieval from multi-axis differentialabsorption spectroscopy measurements Atmospheric Measurement Techniques DOI 10.5194/amt-13-5537-2020 12 November 2020 This paper is about a feasibility study of applying a machine learning technique to derive aerosol properties from a single MAX-DOAS sky scan, which detects sky-scattered UV–visible photons at multiple elevation angles. Evaluation of retrieved aerosol properties shows good performance of the ML algorithm, suggesting several advantages of a ML-based inversion algorithm such as fast data inversion, simple implementation and the ability to extract information not available using other algorithms. Read more
A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones Atmospheric Measurement Techniques DOI 10.5194/amt-13-4715-2020 29 September 2020 We describe a lightweight (2 kg) mid-IR laser spectrometer for airborne, in situ atmospheric methane (CH 4 ) measurements. The instrument, based on an open-path circular multipass cell, provides fast response (1 Hz) and sub-parts-per-billion precision. It can easily be mounted on a drone, giving access to highly resolved 4D (spatial and temporal) data. The performance was assessed during field deployments involving artificial CH 4 releases and vertical concentration gradients in the PBL. QCL spectrometer for mobile, high-precision methane sensing aboard drones">Read more
A global analysis of climate-relevant aerosol properties retrieved from the network of Global AtmosphereWatch (GAW) near-surface observatories Atmospheric Measurement Techniques DOI 10.5194/amt-13-4353-2020 1 September 2020 The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed. GAW) near-surface observatories">Read more
An overview of and issues with sky radiometer technology and SKYNET Atmospheric Measurement Techniques DOI 10.5194/amt-13-4195-2020 25 August 2020 This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community. SKYNET">Read more
N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison Atmospheric Measurement Techniques DOI 10.5194/amt-13-2797-2020 10 June 2020 The latest commercial laser spectrometers have the potential to revolutionize N 2 O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data. Read more