Simulating vertical phytoplankton dynamics in a stratified ocean using a two-layered ecosystem model Biogeosciences DOI 10.5194/bg-22-3253-2025 16 July 2025 Phytoplankton contribute to half of Earth’s primary production, but not a lot is known about subsurface phytoplankton, living at the base of the sunlit ocean. We develop a two-layered box model to simulate phytoplankton seasonal and interannual variations in different depth layers of the ocean. Our model captures seasonal and long-term trends of the two layers, explaining how they respond to a warming ocean, furthering our understanding of how phytoplankton are responding to climate change. Read more
Phylogeochemistry: exploring evolutionary constraints on belemnite rostrum element composition Biogeosciences DOI 10.5194/bg-22-3073-2025 2 July 2025 Belemnite rostrum geochemistry is used as a proxy in palaeoceanography. Evolutionary patterns in element ratios (Mg/Ca, Sr/Ca, Mn/Ca, and Fe/Ca) from belemnite rostra based on a literature dataset are assessed. These proxy data reflect a complex interplay between evolutionary, ontogenetic, environmental, kinetic, and diagenetic effects. We coin the new term “phylogeochemistry” for this interdisciplinary research field. Read more
Sedimentary ancient DNA insights into foraminiferal diversity near the grounding line in the western Ross Sea, Antarctica Biogeosciences DOI 10.5194/bg-22-2601-2025 6 June 2025 Ancient foraminiferal DNA is studied in five Antarctic cores with sediments up to 25 kyr old. We use a standard and a new, more effective marker, which may become the next standard for paleoenvironmental studies. Much less diverse foraminifera occur on slopes of submarine moraines than in open-marine settings. Soft-walled foraminifera, not found in the fossil record, are especially abundant. There is no foraminiferal DNA in tills, suggesting its destruction during glacial redeposition. Read more
Cold-water coral mounds are effective carbon sinks in the western Mediterranean Sea Biogeosciences DOI 10.5194/bg-22-2201-2025 9 May 2025 Cold-water coral mounds are large structures on the seabed that are built by corals over thousands of years. They are regarded as carbonate sinks, with a potentially important role in the marine carbon cycle, but more quantitative studies are needed. Using sediment cores, we calculate the amount of carbon that has been stored in two mounds over the last 400 000 years. We provide the first numbers and show that up to 19 times more carbon is accumulated in mounds than on the common seafloor. Read more
Cenozoic pelagic accumulation rates and biased sampling of the deep-sea record Biogeosciences DOI 10.5194/bg-22-1929-2025 22 April 2025 We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record shows, contrary to prior estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations. Read more
The energy-efficient reductive tricarboxylic acid cycle drives carbon uptake and transfer to higher trophic levels within the Kueishantao shallow-water hydrothermal system Biogeosciences DOI 10.5194/bg-22-1853-2025 15 April 2025 In acidic hot springs off Kueishantao, Campylobacteria fix CO2 by using the reductive tricarboxylic acid (rTCA) cycle, causing them to have an isotopically heavier biomass. Here, we report extremely low isotopic fractionation (of almost 0 ‰), which has never been reported in environmental samples. Moreover, the crab Xenograpsus testudinatus relies up to 34 % on campylobacterial biomass, highlighting the dependency of complex life on microscopic Bacteria in harsh environments. Read more
Composite model-based estimate of the ocean carbon sink from 1959 to 2022 Biogeosciences DOI 10.5194/bg-22-1631-2025 28 March 2025 The ocean is a major natural carbon sink. Despite its importance, estimates of the ocean carbon sink remain uncertain. Here, I present a hybrid model estimate of the ocean carbon sink from 1959 to 2022. By combining ocean models in hindcast mode and Earth system models, I keep the strength of each approach and remove the respective weaknesses. This composite model estimate is similar in magnitude to the best estimate of the Global Carbon Budget but 70 % less uncertain. Read more
Toward more robust net primary production projections in the North Atlantic Ocean Biogeosciences DOI 10.5194/bg-22-841-2025 20 February 2025 The marine biogeochemistry components of Coupled Model Intercomparison Project phase 6 (CMIP6) models vary widely in their process representations. Using an innovative bioregionalization of the North Atlantic, we reveal that this model diversity largely drives the divergence in net primary production projections under a high-emission scenario. The identification of the most mechanistically realistic models allows for a substantial reduction in projection uncertainty. Read more
What controls planktic foraminiferal calcification? Biogeosciences DOI 10.5194/bg-22-791-2025 17 February 2025 Planktic foraminifers are a plankton whose fossilised shell weight is used to reconstruct past environmental conditions such as seawater CO2. However, there is debate about whether other environmental drivers impact shell weight. Here we use a global data compilation and statistics to analyse what controls their weight. We find that the response varies between species and ocean basin, making it important to use regional calibrations and consider which species should be used to reconstruct CO2. Read more
Assessment framework to predict sensitivity of marine calcifiers to ocean alkalinity enhancement – identification of biological thresholds and importance of precautionary principle Biogeosciences DOI 10.5194/bg-22-473-2025 31 January 2025 The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. Our synthesis, based on 68 collected studies with 84 unique species, shows that 35 % of species respond positively, 26 % respond negatively, and 39 % show a neutral response to alkalinity addition. Biological thresholds were found from 50 to 500 µmol kg−1 NaOH addition. A precautionary approach is warranted to avoid potential risks, while current regulatory framework needs improvements to assure safe biological limits. Read more