Carbon cycling in the North American coastal ocean: a synthesis Biogeosciences DOI 10.5194/bg-16-1281-2019 27 March 2019 We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification. Read more
On the role of soil water retention characteristic on aerobic microbial respiration Biogeosciences DOI 10.5194/bg-16-1187-2019 21 March 2019 Soil water is a medium from which microbes acquire resources and within which they are able to move. Occupancy and availability of water and oxygen gas in soils are mutually exclusive. In addition, as soil dries the remaining water is held with an increasing degree of adhesive energy, which restricts microbes’ ability to extract resources from water. We introduce a mathematical model that describes these interacting effects and organic matter decomposition. Read more
Towards a more complete quantification of the global carbon cycle Biogeosciences DOI 10.5194/bg-16-831-2019 14 February 2019 Globally, C is added to the atmosphere from fossil fuels and deforestation, balanced by ocean uptake and atmospheric increase. The difference (residual sink) is equated to plant uptake. But this omits cement carbonation; transport to oceans by dust; riverine organic C and volatile organics; and increased C in plastic, bitumen, wood, landfills, and lakes. Their inclusion reduces the residual sink from 3.6 to 2.1 GtC yr-1 and thus the inferred ability of the biosphere to alter human C emissions. Read more
Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments Biogeosciences DOI 10.5194/bg-16-811-2019 13 February 2019 Multicellular cable bacteria form long filaments that can reach lengths of several centimeters. They affect the chemistry and mineralogy of their surroundings and vice versa. How the surroundings affect the cable bacteria is investigated. They show three different types of biomineral formation: (1) a polymer containing phosphorus in their cells, (2) a sheath of clay surrounding the surface of the filament and (3) the encrustation of a filament via a solid phase containing iron and phosphorus. Read more
Stable carbon and nitrogen isotopic composition of leaves, litter, and soils of various ecosystems along an elevational and land-use gradient at Mount Kilimanjaro, Tanzania Biogeosciences DOI 10.5194/bg-16-409-2019 25 January 2019 Mount Kilimanjaro is an iconic environmental asset under serious threat due to increasing human pressures and climate change constraints. We studied variations in the stable isotopic composition of carbon and nitrogen in plant, litter, and soil material sampled along a strong land-use and altitudinal gradient. Our results show that, besides management, increasing temperatures in a changing climate may promote carbon and nitrogen losses, thus altering the stability of Kilimanjaro ecosystems. Read more
Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate Biogeosciences DOI 10.5194/bg-16-117-2019 16 January 2019 We have compared global carbon budgets calculated from numerical inverse models and CO2 observations, and evaluated how these systems reproduce vertical gradients in atmospheric CO2 from aircraft measurements. We found that available models have converged on near-neutral tropical total fluxes for several decades, implying consistent sinks in intact tropical forests, and that assumed fossil fuel emissions and predicted atmospheric growth rates are now the dominant axes of disagreement. Read more
Distribution and cycling of terrigenous dissolved organic carbon in peatland-draining rivers and coastal waters of Sarawak, Borneo Biogeosciences DOI 10.5194/bg-15-6847-2018 16 November 2018 The carbon cycle is a key control for the Earth’s climate. Every year rivers deliver a lot of organic carbon to coastal seas, but we do not know what happens to this carbon, particularly in the tropics. We show that rivers in Borneo deliver carbon from peat swamps to the sea with at most minimal biological or chemical alteration in estuaries, but sunlight can rapidly oxidise this carbon to CO2. This means that south-east Asian seas are likely hotspots of terrestrial carbon decomposition. Read more
Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions Biogeosciences DOI 10.5194/bg-15-6519-2018 6 November 2018 Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands. Read more
Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian heatwave Biogeosciences DOI 10.5194/bg-15-6067-2018 16 October 2018 Northern forests enhanced their productivity during and before the 2010 Russian mega heatwave. We scrutinize this issue with a novel type of multivariate extreme event detection approach. Forests compensate for 54 % of the carbon losses in agricultural ecosystems due to vulnerable conditions in spring and better water management in summer. The findings highlight the importance of forests in mitigating climate change, while not alleviating the consequences of extreme events for food security. Read more
Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence Biogeosciences DOI 10.5194/bg-15-5929-2018 9 October 2018 Carbon fixed by plants and phytoplankton through photosynthesis is ultimately stored in soils and sediments or released to the atmosphere during decomposition of dead biomass. Carbon-use efficiency is a useful metric to quantify the fate of carbon – higher efficiency means higher storage and lower release to the atmosphere. Here we summarize many definitions of carbon-use efficiency and study how this metric changes from organisms to ecosystems and from terrestrial to aquatic environments. Read more