Assessment framework to predict sensitivity of marine calcifiers to ocean alkalinity enhancement – identification of biological thresholds and importance of precautionary principle Biogeosciences DOI 10.5194/bg-22-473-2025 31 January 2025 The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. Our synthesis, based on 68 collected studies with 84 unique species, shows that 35 % of species respond positively, 26 % respond negatively, and 39 % show a neutral response to alkalinity addition. Biological thresholds were found from 50 to 500 µmol kg−1 NaOH addition. A precautionary approach is warranted to avoid potential risks, while current regulatory framework needs improvements to assure safe biological limits. Read more
Efficiency metrics for ocean alkalinity enhancements under responsive and prescribed atmospheric pCO2 conditions Biogeosciences DOI 10.5194/bg-22-341-2025 20 January 2025 Marine CO2 removal (mCDR) is a promising technology for removing legacy emissions from the atmosphere. Its indirect nature makes it difficult to assess experimentally; instead one relies heavily on simulation. Many past papers have treated the atmosphere as non-responsive to the intervention studied. We show that even under these simplified assumptions, the increase in ocean CO2 inventory is equal to the equivalent quantity of direct CO2 removals occurring over time, in a realistic atmosphere. Read more
Ensemble estimates of global wetland methane emissions over 2000–2020 Biogeosciences DOI 10.5194/bg-22-305-2025 17 January 2025 This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change. Read more
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement Biogeosciences DOI 10.5194/bg-22-71-2025 10 January 2025 Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring. Read more
Microbial response to deliquescence of nitrate-rich soils in the hyperarid Atacama Desert Biogeosciences DOI 10.5194/bg-21-5305-2024 29 November 2024 We studied unique nitrate-rich soils in the hyperarid Atacama Desert that form brines at night under high relative humidity. Despite providing water for microorganisms, these soils exhibit extremely low microbial activity, indicating that the high nitrate levels inhibit microbial life. On the other hand, enriched organic matter indicates their potential preservation. This research helps to understand the limits of life in extreme environments and aids in the search for signs of life on Mars. Read more
Microbial strong organic-ligand production is tightly coupled to iron in hydrothermal plumes Biogeosciences DOI 10.5194/bg-21-5233-2024 29 November 2024 Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time Read more
Representation of the terrestrial carbon cycle in CMIP6 Biogeosciences DOI 10.5194/bg-21-5321-2024 28 November 2024 This study investigates present-day carbon cycle variables in CMIP5 and CMIP6 simulations. Overall, CMIP6 models perform better but also show many remaining biases. A significant improvement in the simulation of photosynthesis in models with a nitrogen cycle is found, with only small differences between emission- and concentration-based simulations. Thus, we recommend using emission-driven simulations in CMIP7 by default and including the nitrogen cycle in all future carbon cycle models. Read more
X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X Biogeosciences DOI 10.5194/bg-21-5079-2024 25 November 2024 The movement of water, carbon, and energy from the Earth’s surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates. BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X">Read more
How to measure the efficiency of bioenergy crops compared to forestation Biogeosciences DOI 10.5194/bg-21-5005-2024 15 November 2024 Using a state-of-the-art land model, we find that bioenergy plants can store carbon more efficiently than forests over long periods in the soil, in geological reservoirs, or by substituting fossil-fuel-based energy. Planting forests is more suitable for reaching climate targets by 2050. The carbon removal potential depends also on local environmental conditions. These considerations have important implications for climate policy, spatial planning, nature conservation, and agriculture. Read more
Seafloor sediment characterization improves estimates of organic carbon standing stocks: an example from the Eastern Shore Islands, Nova Scotia, Canada Biogeosciences DOI 10.5194/bg-21-4569-2024 25 October 2024 Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were 12 times higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon. Read more