Reviews and syntheses: Impacts of plant-silica–herbivore interactions onterrestrial biogeochemical cycling Biogeosciences DOI 10.5194/bg-18-1259-2021 8 March 2021 Researchers have known for decades that silicon plays a major role in biogeochemical and plant–soil processes in terrestrial systems. We review and synthesize 119 available studies directly investigating silicon and herbivory to summarize key trends and highlight research gaps and opportunities. Read more
A limited effect of sub-tropical typhoons on phytoplankton dynamics Biogeosciences DOI 10.5194/bg-18-849-2021 1 March 2021 Typhoons are assumed to stimulate primary ocean production through the upward mixing of nutrients into the ocean surface. This assumption is based largely on observations of increased surface chlorophyll concentrations following the passage of typhoons. This surface chlorophyll enhancement, occasionally detected by satellites, is often undetected due to intense cloud coverage. Read more
Fire and vegetation dynamics in northwest Siberia during the last 60 years based on high-resolution remote sensing Biogeosciences DOI 10.5194/bg-18-207-2021 1 February 2021 The rapidly warming Arctic undergoes transitions that can influence global carbon balance. One of the key processes is the shift towards vegetation types with higher biomass underlining a stronger carbon sink. The shift is predicted by bioclimatic models based on abiotic climatic factors, but it is not always confirmed with observations. Recent studies highlight the role of disturbances in the shift. Here we use high-resolution remote sensing to study the process of transition from tundra to forest and its connection to wildfires in the 20 000 km2 area in northwest Siberia. Overall, 40 % of the study area was burned during a 60-year period. Three-quarters of the burned areas were dry tundra. About 10 % of the study area experienced two–three fires with an interval of 15–60 years suggesting a shorter fire return interval than that reported earlier for the northern areas of central Siberia (130–350 years). Based on our results, the shift in vegetation (within the 60-year period) occurred in 40 %–85 % of the burned territories. All fire-affected territories were flat; therefore no effect of topography was detected. Oppositely, in the undisturbed areas, a transition of vegetation was observed only in 6 %–15 % of the territories, characterized by steeper topographic slopes. Our results suggest a strong role of disturbances in the tree advance in northwest Siberia. Read more
Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass Biogeosciences DOI 10.5194/bg-18-189-2021 29 January 2021 Understanding controls on the persistence of soil organic matter (SOM) is essential to constrain its role in the carbon cycle and inform climate–carbon cycle model predictions. Emerging concepts regarding the formation and turnover of SOM imply that it is mainly comprised of mineral-stabilized microbial products and residues; however, direct evidence in support of this concept remains limited. Here, we introduce and test a method for the isolation of isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) – diagnostic membrane lipids of archaea and bacteria, respectively – for subsequent natural abundance radiocarbon analysis. The method is applied to depth profiles from two Swiss pre-Alpine forested soils. We find that the Δ14C values of these microbial markers markedly decrease with increasing soil depth, indicating turnover times of millennia in mineral subsoils. The contrasting metabolisms of the GDGT-producing microorganisms indicates it is unlikely that the low Δ14C values of these membrane lipids reflect heterotrophic acquisition of 14C-depleted carbon. We therefore attribute the 14C-depleted signatures of GDGTs to their physical protection through association with mineral surfaces. These findings thus provide strong evidence for the presence of stabilized microbial necromass in forested mineral soils. GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass">Read more
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition Biogeosciences DOI 10.5194/bg-18-169-2021 28 January 2021 Meeting internationally agreed-upon climate targets requirescarbon dioxide removal (CDR) strategies coupled with an urgent phase-down offossil fuel emissions. However, the efficacy and wider impacts of CDR arepoorly understood. Enhanced rock weathering (ERW) is a land-based CDRstrategy requiring large-scale field trials. Here we show that a low 3.44 t ha-1 wollastonite treatment in an 11.8 ha acid-rain-impacted forested watershed in New Hampshire, USA, led to cumulative carbon capture by carbonic acid weathering of 0.025–0.13 t CO2 ha-1 over 15 years. Despite a 0.8–2.4 t CO2 ha-1 logistical carbon penalty from mining,grinding, transportation, and spreading, by 2015 weathering together withincreased forest productivity led to net CDR of 8.5–11.5 t CO2 ha-1. Our results demonstrate that ERW may be an effective, scalableCDR strategy for acid-impacted forests but at large scales requiressustainable sources of silicate rock dust. Read more
Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat Biogeosciences DOI 10.5194/bg-18-25-2021 22 January 2021 This paper examines the question of what causes the rapid spring growth of microscopic marine algae (phytoplankton) in the ice-covered ocean surrounding Antarctica. One prominent hypothesis proposes that the melting of sea ice is the primary cause, while our results suggest that this is only part of the explanation. In particular, we show that phytoplankton are able to start growing before the sea ice melts appreciably, much earlier than previously thought. Read more
Investigating the sensitivity of soil heterotrophic respiration to recent snow cover changes in Alaska using a satellite-based permafrost carbon model Biogeosciences DOI 10.5194/bg-17-5861-2020 28 December 2020 We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO 2 seasonal cycles. Read more
Reviews and syntheses: The mechanisms underlying carbon storage in soil Biogeosciences DOI 10.5194/bg-17-5223-2020 25 November 2020 The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest. Read more
Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru Biogeosciences DOI 10.5194/bg-17-4831-2020 10 November 2020 The eastern boundary upwelling system off Peru is among Earth’s most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure. Read more
Increase in ocean acidity variability and extremes under increasing atmospheric CO2 Biogeosciences DOI 10.5194/bg-17-4633-2020 29 October 2020 Ensemble simulations of an Earth system model reveal that ocean acidity extremes have increased in the past few decades and are projected to increase further in terms of frequency, intensity, duration, and volume extent. The increase is not only caused by the long-term ocean acidification due to the uptake of anthropogenic CO 2 , but also due to changes in short-term variability. The increase in ocean acidity extremes may enhance the risk of detrimental impacts on marine organisms. Read more