Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea Nonlinear Processes in Geophysics DOI 10.5194/npg-31-477-2024 21 October 2024 With seismic data, we observed high-frequency internal waves (HIWs) with amplitudes of around 10 m. A shoaling thermocline and gentle slope suggest that HIWs result from fission. Remote sensing data support this. Strong shear caused Ri below 0.25 over 20–30 km, indicating instability. HIWs enhance mixing, averaging 10-4 m2s-1, revealing a new energy cascade from shoaling waves to turbulence, and enhancing our understanding of energy dissipation and mixing in the northern South China Sea. Read more
Bringing it all together: science priorities for improved understanding of Earth system change and to support international climate policy Earth System Dynamics DOI 10.5194/esd-15-1319-2024 18 October 2024 We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake. Read more
The Earthquake Risk Model of Switzerland, ERM-CH23 Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3561-2024 17 October 2024 The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population. ERM-CH23">Read more
Uncertainty-informed selection of CMIP6 Earth system model subsets for use in multisectoral and impact models Earth System Dynamics DOI 10.5194/esd-15-1301-2024 15 October 2024 From running climate models to using their outputs to identify impacts, modeling the integrated human–Earth system is expensive. This work presents a method to identify a smaller subset of models from the full set that preserves the uncertainty characteristics of the full set. This results in a smaller number of runs that an impact modeler can use to assess how uncertainty propagates from the Earth to the human system, while still capturing the range of outcomes provided by climate models. Read more
The spatio-temporal evolution of the Chongzhen drought (1627–1644) in China and its impact on famine Climate of the Past DOI 10.5194/cp-20-2287-2024 14 October 2024 This study used 1802 drought and 1977 famine records from historical documents to reconstruct the spatial–temporal progression of the Chongzhen drought (1627–1644) in China and its impacts. We advance this research by reconstructing the annual spatial patterns and regional series of drought; demonstrating drought as the primary factor triggering famine; and identifying the transmission pathway of the drought’s impacts and how social factors, especially human responses, regulated these impacts. Read more
Earth science for all? The economic barrier to European geoscience conferences Geoscience Communication DOI 10.5194/gc-7-245-2024 14 October 2024 Conferences are key for knowledge exchange and networking. However, these events lack diversity, favoring wealthier countries and limiting opportunities for scholars from lower-income regions. Our study of the EGU meeting reveals that attendance is mostly influenced by a country’s income. To promote inclusivity, we suggest rotating event locations, offering affordable accommodations, and establishing travel funds. These steps can help create a more diverse and innovative scientific community. Read more
The 2023 global warming spike was driven by the El Niño–Southern Oscillation Atmospheric Chemistry and Physics DOI 10.5194/acp-24-11275-2024 14 October 2024 The rapid global warming of 2023 has led to concerns that it could be externally driven. Here we show that climate models subject only to internal variability predict such warming spikes but rarely (p~1.6 %). However, when a prolonged La Niña immediately precedes an El Niño, as occurred leading up to 2023, such spikes are not uncommon (p~10.3 %). Virtually all of the spikes occur during an El Niño, strongly suggesting that internal variability drove the 2023 warming. Read more
Stable and unstable fall motions of plate-like ice crystal analogues Atmospheric Chemistry and Physics DOI 10.5194/acp-24-11133-2024 14 October 2024 This study uses 3D-printed ice crystal analogues falling in a water–glycerine mix and observed with multi-view cameras, simulating atmospheric conditions. Four types of motion are observed: stable, zigzag, transitional, and spiralling. Particle shape strongly influences motion; complex shapes have a wider range of conditions where they fall steadily compared to simple plates. The most common orientation of unstable particles is non-horizontal, contrary to prior assumptions of always horizontal. Read more
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept Hydrology and Earth System Sciences DOI 10.5194/hess-28-4427-2024 11 October 2024 Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding ERRA): proof of concept">Read more
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT Atmospheric Measurement Techniques DOI 10.5194/amt-17-5785-2024 4 October 2024 We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes. ESA Earth Explorer 11 candidate CAIRT">Read more
The effects of land use on soil carbon stocks in the UK Biogeosciences DOI 10.5194/bg-21-4301-2024 4 October 2024 We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify. Read more
Calibrating estimates of ionospheric long-term change Annales Geophysicae DOI 10.5194/angeo-42-395-2024 27 September 2024 Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases. Read more
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3173-2024 23 September 2024 Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management. Read more
Increasing aerosol optical depth spatial and temporal availability by merging datasets from geostationary and sun-synchronous satellites Atmospheric Measurement Techniques DOI 10.5194/amt-17-5455-2024 20 September 2024 In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models. Read more
Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission Atmospheric Measurement Techniques DOI 10.5194/amt-17-5429-2024 20 September 2024 MethaneSAT is an upcoming satellite mission designed to monitor methane emissions from the oil and gas (O&G) industry globally. Here, we present observations from the first flight campaign of MethaneAIR, a MethaneSAT-like instrument mounted on an aircraft. MethaneAIR can map methane with high precision and accuracy over a typically sized oil and gas basin (~200 km2) in a single flight. This paper demonstrates the capability of the upcoming satellite to routinely track global O&G emissions. Read more
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3095-2024 20 September 2024 The eruption of the Hunga Tonga–Hunga Ha’apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events. Read more
The 2020 European Seismic Hazard Model: overview and results Natural Hazards and Earth System Sciences DOI 10.5194/nhess-24-3049-2024 20 September 2024 The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe. Read more
Large-sample hydrology – a few camels or a whole caravan? Hydrology and Earth System Sciences DOI 10.5194/hess-28-4219-2024 20 September 2024 We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data. Read more
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products Atmospheric Measurement Techniques DOI 10.5194/amt-17-5301-2024 20 September 2024 ATLID (atmospheric lidar) is the lidar to be flown on the Earth Clouds and Radiation Explorer satellite (EarthCARE). EarthCARE is a joint European–Japanese satellite mission that was launched in May 2024. ATLID is an advanced lidar optimized for cloud and aerosol property profile measurements. This paper describes some of the key novel algorithms being applied to this lidar to retrieve cloud and aerosol properties. Example results based on simulated data are presented and discussed. PRO): the A-AER, A-EBD, A-TC, and A-ICE products">Read more
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models? Climate of the Past DOI 10.5194/cp-20-1989-2024 20 September 2024 We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value. Read more